高级检索
当前位置: 首页 > 详情页

Traditional Chinese medicine active ingredients-based selenium nanoparticles regulate antioxidant selenoproteins for spinal cord injury treatment

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Guangzhou Univ Chinese Med, Guangzhou 510006, Peoples R China [2]Guangzhou Univ Chinese Med, Affiliated Hosp 2, Div Spine Ctr, Guangzhou 510120, Peoples R China [3]Jinan Univ, Dept Chem, Guangzhou 510632, Peoples R China
出处:
ISSN:

关键词: Traditional Chinese Medicine active ingredients Selenium nanoparticles Antioxidant selenoproteins Spinal cord injury

摘要:
Background As Traditional Chinese Medicine (TCM) drugs, Huangqi and Danshen are always applied in combination for spinal cord injury (SCI) treatment based on the compatibility theory of TCM. Astragalus Polysaccharidesis (APS) and Tanshinone IIA (TSIIA) are the main active ingredients of Huangqi and Danshen, and they both possess neuroprotective effects through antioxidant activities. However, low solubility and poor bioavailability have greatly limited their application. In recent years, selenium nanoparticles (SeNPs) have drawn enormous attention as potential delivery carrier for antioxidant drugs. Results In this study, TCM active ingredients-based SeNPs surface decorated with APS and loaded with TSIIA (TSIIA@SeNPs-APS) were successfully synthesized under the guidance of the compatibility theory of TCM. Such design improved the bioavailability of APS and TSIIA with the benefits of high stability, efficient delivery and highly therapeutic efficacy for SCI treatment illustrated by an improvement of the antioxidant protective effects of APS and TSIIA. The in vivo experiments indicated that TSIIA@SeNPs-APS displayed high efficiency of cellular uptake and long retention time in PC12 cells. Furthermore, TSIIA@SeNPs-APS had a satisfactory protective effect against oxidative stress-induced cytotoxicity in PC12 cells by inhibiting excessive reactive oxygen species (ROS) production, so as to alleviate mitochondrial dysfunction to reduce cell apoptosis and S phase cell cycle arrest, and finally promote cell survival. The in vivo experiments indicated that TSIIA@SeNPs-APS can protect spinal cord neurons of SCI rats by enhancing GSH-Px activity and decreasing MDA content, which was possibly via the metabolism of TSIIA@SeNPs-APS to SeCys(2) and regulating antioxidant selenoproteins to resist oxidative stress-induced damage. Conclusions TSIIA@SeNPs-APS exhibited promising therapeutic effects in the anti-oxidation therapy of SCI, which paved the way for developing the synergistic effect of TCM active ingredients by nanotechnology to improve the efficacy as well as establishing novel treatments for oxidative stress-related diseases associated with Se metabolism and selenoproteins regulation.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 工程技术
小类 | 2 区 生物工程与应用微生物 3 区 纳米科技
最新[2025]版:
大类 | 1 区 生物学
小类 | 1 区 生物工程与应用微生物 2 区 纳米科技
JCR分区:
出版当年[2020]版:
Q1 NANOSCIENCE & NANOTECHNOLOGY Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
最新[2023]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q1 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Guangzhou Univ Chinese Med, Guangzhou 510006, Peoples R China [2]Guangzhou Univ Chinese Med, Affiliated Hosp 2, Div Spine Ctr, Guangzhou 510120, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Guangzhou Univ Chinese Med, Guangzhou 510006, Peoples R China [2]Guangzhou Univ Chinese Med, Affiliated Hosp 2, Div Spine Ctr, Guangzhou 510120, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号