高级检索
当前位置: 首页 > 详情页

Robust boron nanoplatform provokes potent tumoricidal activities via inhibiting heat shock protein

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 卓越:梯队期刊

机构: [1]Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China [2]Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China [3]College of Health Science and Environmental Engineering, School of Shenzhen Technology University, Shenzhen 518118, China [4]State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China [5]Institute of Pediatrics, Shenzhen Children’s Hospital, Shenzhen 518038, China [6]Shenzhen International Institute for Biomedical Research, Shenzhen 518116, China
出处:
ISSN:

关键词: Mild photothermal therapy Chemotherapy Boron nanosheets Heat shock proteins Breast cancer

摘要:
Near-infrared (NIR)-light-triggered photothermal therapy (PTT) is a promising treatment for breast cancer. However, its therapeutic efficiency is often compromised due to the heat -induced up-regulation of heat shock proteins, which confer photothermal resistance. To solve this urgent problem, PEGylated two-dimensional boron nanosheets (B-PEG)-which allow both multimodal imaging and photothermal conversion-were loaded with gambogic acid (GA), which can inhibit heat shock protein 90 (Hsp90). Experimental findings indicated that this combination of B-PEG and GA could serve as an integrated drug delivery system for cancer diagnosis and treatment. It could be used to administer mild PTT as well as chemotherapy for breast cancer, provide improved anti-tumor effects, and reduce the toxicity of PTT, all while inhibiting breast cancer growth. This drug delivery system could offer a novel tool for administering chemotherapy combined with PTT while avoiding the adverse effects of traditional PTT. (c) 2022 Shenyang Pharmaceutical University. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 医学
小类 | 1 区 药学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 药学
JCR分区:
出版当年[2020]版:
Q1 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2020 今日访问量:0 总访问量:646 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号