高级检索
当前位置: 首页 > 详情页

Sodium hydrosulfide inhibits hemin-induced ferroptosis and lipid peroxidation in BV2 cells via the CBS/H2S system

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University, Shenzhen, China [2]Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, China [3]Department of Epidemiology and Biostatistics, College of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China [4]School of Public Health and Management, Ningxia Medical University, Yinchuan, China [5]Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, China
出处:
ISSN:

关键词: Intracerebral hemorrhage CBS Sodium hydrosulfide Ferroptosis Lipid peroxidation Hemin

摘要:
Ferroptosis is a form of iron-dependent programmed cell death discovered in recent years that has been shown to be involved in diverse neurological disorders. Hydrogen sulfide (H2S) is an important signaling molecule with neuroprotective effects, including antioxidation. However, whether the protective mechanism of H2S is related to ferroptosis remains unknown. Therefore, in this study, we focused on the protective mechanisms of sodium hydrosulfide (NaHS, a donor of H2S) against ferroptosis caused by intracerebral hemorrhage (ICH) using a hemin-induced BV2 cell injury model in vitro. Our results indicated that NaHS enhanced cell viability and reduced hemin-induced lactate dehydrogenase (LDH) release. NaHS suppressed ferroptosis after hemin treatment, which was confirmed by attenuated reactive oxygen species (ROS) and lipid peroxidation, maintained iron homeostasis, recovery of the expression of glutathione peroxidase 4 (GPX4) and solute carrier family 7-member 11 (SLC7A11), and increased glutathione (GSH) production. Moreover, we demonstrated that inhibiting ferroptosis improved cell survival and prevented hemin-induced oxidative stress. In addition, NaHS was also able to block ferroptosis inducer RSL3-induced ferroptotic cell death. We also found that NaHS increased cystathionine-β-synthase (CBS) expression and H2S levels after hemin treatment. Furthermore, NaHS-induced ferroptosis reduction was inhibited by the CBS inhibitor aminooxyacetic acid (AOAA) as well as by CBS small interference RNA (siCBS). In summary, these findings demonstrated that NaHS protects against hemin-induced ferroptosis by reducing lipid peroxidation, inhibiting iron overload, increasing GSH production, and improving GPX4 and SLC7A11 via the CBS/H2S system. The CBS/H2S system may be a promising target for preventing ferroptosis after ICH.Copyright © 2023 Elsevier Inc. All rights reserved.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 生物学
小类 | 3 区 细胞生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 3 区 细胞生物学
JCR分区:
出版当年[2021]版:
Q2 CELL BIOLOGY
最新[2023]版:
Q2 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University, Shenzhen, China [2]Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号