高级检索
当前位置: 首页 > 详情页

Astragulus embranaceus (Fisch.)Bge-Dioscorea opposita Thunb herb pair ameliorates sarcopenia in senile type 2 diabetes mellitus through Rab5a/mTOR-mediated mitochondrial dysfunction

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao ‘an District, Shenzhen, Guangdong, 518000, China [2]School of Traditional Chinese Medicine, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510000, China [3]The First Clinical Medical College, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510000, China [4]Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, No. 2, Wenming East Road, Xiashan District, Zhanjiang City, 524000, China
出处:
ISSN:

关键词: Skeletal muscle atrophy Herb pair Mitochondrial quality control Network pharmacology Astragulus embranaceus (Fisch )Bge Dioscorea opposita Thunb

摘要:
The combination of Astragulus membranaceus (Fisch.) Bge (Huangqi) and Dioscorea opposita Thunb (Shanyao) is one of the most widely accepted herb pairs in traditional Chinese medicine prescriptions for treating sarcopenia. However, the mechanisms underlying the combination of these herbs for anti-sarcopenia treatment are not yet fully understood.To investigate the potential effect of the Astragulus membranaceus (Fisch.) Bge and Dioscorea opposita Thunb herb pair (Ast-Dio) on sarcopenia in mice that have been induced with senile type 2 diabetes mellitus, as well as to explore the underlying mechanisms related to the Rab5a/mTOR signaling pathway and mitochondrial quality control.Network pharmacology was utilized to identify the main active ingredients of Ast-Dio and potential therapeutic targets for sarcopenia. Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted to explore the underlying mechanisms of Ast-Dio in treating sarcopenia. The high-performance liquid chromatography method coupled with triple-quadrupole tandem mass spectrometry was developed to quantify the major constituents of Ast-Dio. Male C57/BL6 mice, aged 12 months, induced with type 2 diabetes mellitus via streptozotocin were divided into three groups for 8 weeks: the model group, Ast-Dio treatment group (7.8 g/kg), and metformin treatment group (100 mg/kg). Normal control groups included mice aged 3 and 12 months, respectively. The study monitored changes in fasting blood glucose levels, grip strength, and body weight during 8 weeks of intragastric administration. Liver and kidney function in mice was evaluated by measuring the levels of serum creatinine, alanine transaminase, and aspartate transaminase. Skeletal muscle mass condition was evaluated by muscle weight, and hematoxylin and eosin staining. Protein and mRNA expressions related to muscle atrophy, mitochondrial quality control, and the Rab5a/mTOR signaling pathway were detected using immunofluorescence staining, immunohistochemical staining, Western blotting, and quantitative real-time polymerase chain reaction. In addition, transmission electron microscopy was employed to investigate the condition of mitochondria in the groups.Through the prediction analysis of network pharmacology, we identified mTOR as one of the primary targets for Ast-Dio therapy of sarcopenia. Gene Ontology functional enrichment analysis revealed that mitochondrial control quality is crucial in the treatment of sarcopenia with Ast-Dio. Our findings showed that senile type 2 diabetes mellitus induced muscle mass loss and a reduction in grip strength, both of which were dramatically restored by Ast-Dio treatment. Notably, Ast-Dio increased Myogenin expression while decreasing Atrogin-1 and MuRF-1 expression. Additionally, Ast-Dio activated Rab5a/mTOR and its downstream effector AMPK. Moreover, Ast-Dio modulated mitochondrial quality control by decreasing Mitofusin-2 expression while increasing the expression of TFAM, PGC-1α, and MFF.Our results suggest that Ast-Dio treatment may alleviate sarcopenia in mice with senile type 2 diabetes mellitus through its effects on the Rab5a/mTOR pathway and mitochondrial quality control.Copyright © 2023. Published by Elsevier B.V.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 1 区 药学 1 区 全科医学与补充医学 1 区 植物科学 2 区 药物化学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 全科医学与补充医学 1 区 药学 2 区 药物化学 2 区 植物科学
JCR分区:
出版当年[2021]版:
Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE Q1 PLANT SCIENCES Q2 CHEMISTRY, MEDICINAL Q2 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 CHEMISTRY, MEDICINAL Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE Q1 PHARMACOLOGY & PHARMACY Q1 PLANT SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao ‘an District, Shenzhen, Guangdong, 518000, China [2]School of Traditional Chinese Medicine, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510000, China
通讯作者:
通讯机构: [1]Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao ‘an District, Shenzhen, Guangdong, 518000, China [2]School of Traditional Chinese Medicine, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou, Guangdong, 510000, China [*1]Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao ’an District, Shenzhen, Guangdong, 510080, China. [*2]Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, No. 1333, Xinhu Road, Bao ’an District, Shenzhen, Guangdong, 510080, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2022 今日访问量:0 总访问量:648 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号