高级检索
当前位置: 首页 > 详情页

Rational construction and evaluation of a dual-functional near-infrared fluorescent probe for the imaging of Amyloid-β and mitochondrial viscosity

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China [2]The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China [3]Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou 510120, China
出处:
ISSN:

关键词: Aβ plaques Near-infrared Fluorescent probe Viscosity

摘要:
Alzheimer's disease is a fatal, incurable, chronic neurodegenerative disease. Diagnosis in its early and even preclinical stages will be beneficial for its prevention and treatment. In the accepted pathological theory, abnormal accumulation of Aβ protein and abnormal mitochondrial function, including changes in mitochondrial viscosity, is closely related to Alzheimer's disease. To date, rare fluorescent probes have been reported that can simultaneously image Aβ plaques and mitochondrial viscosity. Therefore, the development of a dual-functional fluorescent probe for real-time fluorescence imaging of Aβ plaques and mitochondrial viscosity is crucial to discover a novel approach and strategy for the treatment of Alzheimer's disease, and to understand the pathological process and crosstalk between different biomarkers of Alzheimer's disease. Herein, we rationally designed and synthesized a series of fluorescent probes QM-SF-1∼5 with dimethylamino-quinolinium as the skeleton and thiophene as the π bridge to connect the groups with different electron-push/pull capacities. Among them, QM-SF-2 exhibited excellent properties such as large Stokes shift (168 nm), near-infrared emission (689 nm), and high selectivity and sensitivity (limit of detection was 1.07 μM) to Aβ aggregate and mitochondrial viscosity changes, indicating its promising prospects as a dual-functional imaging tool in the pathological study of Alzheimer's disease.Copyright © 2023 Elsevier B.V. All rights reserved.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 化学
小类 | 2 区 光谱学
最新[2025]版:
大类 | 2 区 化学
小类 | 2 区 光谱学
JCR分区:
出版当年[2022]版:
Q1 SPECTROSCOPY
最新[2023]版:
Q1 SPECTROSCOPY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号