高级检索
当前位置: 首页 > 详情页

scFSNN: a feature selection method based on neural network for single-cell RNA-seq data

文献详情

资源类型:
Pubmed体系:
机构: [1]School of Mathematical Sciences, Shenzhen University, Nanshan, Shenzhen, 518060, Guangdong, China. [2]School of Mathematics and Statistics and KLAS, Northeast Normal University, Renmin Street, Changchun, 130000, Jilin, China. [3]Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
出处:

关键词: Feature selection Deep neural network FDR control

摘要:
While single-cell RNA sequencing (scRNA-seq) allows researchers to analyze gene expression in individual cells, its unique characteristics like over-dispersion, zero-inflation, high gene-gene correlation, and large data volume with many features pose challenges for most existing feature selection methods. In this paper, we present a feature selection method based on neural network (scFSNN) to solve classification problem for the scRNA-seq data. scFSNN is an embedded method that can automatically select features (genes) during model training, control the false discovery rate of selected features and adaptively determine the number of features to be eliminated. Extensive simulation and real data studies demonstrate its excellent feature selection ability and predictive performance.© 2024. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生物工程与应用微生物 2 区 遗传学
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 生物工程与应用微生物 3 区 遗传学
第一作者:
第一作者机构: [1]School of Mathematical Sciences, Shenzhen University, Nanshan, Shenzhen, 518060, Guangdong, China. [2]School of Mathematics and Statistics and KLAS, Northeast Normal University, Renmin Street, Changchun, 130000, Jilin, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2022 今日访问量:0 总访问量:648 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号