高级检索
当前位置: 首页 > 详情页

Automatic Segmentation of Individual Tooth in Dental CBCT Images From Tooth Surface Map by a Multi-Task FCN

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China [2]Stomatological Hospital, Southern Medical University, Guangzhou 510280, China [3]Department of Radiotherapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
出处:
ISSN:

关键词: Individual tooth segmentation dental CBCT deep learning marker-controlled watershed transform

摘要:
Accurate and automatic segmentation of individual tooth is critical for computer-aided analysis towards clinical decision support and treatment planning. Three-dimensional reconstruction of individual tooth after the segmentation also plays an important role in simulation in digital orthodontics. However, it is difficult to automatically segment individual tooth in cone beam computed tomography (CBCT) images due to the blurring boundaries of neighboring teeth and the similar intensities between teeth and mandible bone. In this work, we propose the use of a multi-task 3D fully convolutional network (FCN) and marker-controlled watershed transform (MWT) to segment individual tooth. The multi-task FCN learns to simultaneously predict the probability of tooth region and the probability of tooth surface. Through the combination of the tooth probability gradient map and the surface probability map as the input image, MWT is used to automatically separate and segment individual tooth. Twenty-five dental CBCT scans are used in the study. The average Dice similarity coefficient, Jaccard index, and relative volume difference are 0.936 (& x00B1;0.012), 0.881 (& x00B1;0.019), and 0.072 (& x00B1;0.027), respectively, and the average symmetric surface distance is 0.363 (& x00B1;0.145) mm for our method. The experimental results demonstrate that the multi-task 3D FCN combined with MWT can segment individual tooth of various types in dental CBCT images.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:信息系统 2 区 工程:电子与电气 3 区 电信学
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气 4 区 电信学
JCR分区:
出版当年[2018]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 TELECOMMUNICATIONS Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
最新[2023]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 TELECOMMUNICATIONS

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号