高级检索
当前位置: 首页 > 详情页

Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer's disease.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Rehabilitation Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou,Guangdong 510260 [2]The Teaching and Research Section of Surgery, Shandong University of Traditional Chinese Medicine,Jinan, Shandong 250355 [3]Department of Human Anatomy, Guangzhou Medical University, Guangzhou,Guangdong 511436, P.R. China
出处:
ISSN:

关键词: Alzheimer's disease neural stem cell cholinergic neurons synapse transplantation

摘要:
Alzheimer's disease (AD) is the most prevalent age‑related neurodegenerative disorder. It is featured by the progressive accumulation of β‑amyloid (Aβ) plaques and neurofibrillary tangles. This can eventually lead to a decrease of cholinergic neurons in the basal forebrain. Stem cell transplantation is an effective treatment for neurodegenerative diseases. Previous studies have revealed that different types of stem or progenitor cells can mitigate cognition impairment in different Alzheimer's disease mouse models. However, understanding the underlying mechanisms of neural stem cell (NSC) therapies for AD requires further investigation. In the present study, the effects and the underlying mechanisms of the treatment of AD by NSCs are reported. The latter were labelled with the enhanced green fluorescent protein (EGFP) prior to implantation into the bilateral hippocampus of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (Tg) mouse model of AD. It was observed that the number of basal forebrain cholinergic neurons was restored and the expression of choline acetyltransferase (ChAT) protein was increased. Moreover, the levels of synaptophysin (SYP), postsynaptic density protein 95 (PSD‑95) and microtubule‑associated protein (MAP‑2) were significantly increased in the hippocampus of NSC‑treated AD mice. Notably, spatial learning and memory were both improved after transplantation of NSCs. In conclusion, the present study revealed that NSC transplantation improved learning and memory functions in an AD mouse model. This treatment allowed repairing of basal forebrain cholinergic neurons and increased the expression of the cognition‑related proteins SYP, PSD‑95 and MAP‑2 in the hippocampus.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验 4 区 肿瘤学
JCR分区:
出版当年[2018]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL Q4 ONCOLOGY
最新[2023]版:
Q2 MEDICINE, RESEARCH & EXPERIMENTAL Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Department of Rehabilitation Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou,Guangdong 510260
共同第一作者:
通讯作者:
通讯机构: [1]Department of Rehabilitation Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou,Guangdong 510260 [*1]Department of Rehabilitation Medicine, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong 510260, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号