高级检索
当前位置: 首页 > 详情页

PYNOD reduces microglial inflammation and consequent neurotoxicity upon lipopolysaccharides stimulation.

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Ultrasonic Diagnosis, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000 [2]Key Laboratory of State Administration of Traditional Chinese Medicine of The People's Republic of China, Institute of Brain Research, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
出处:
ISSN:

关键词: PYNOD microglial inflammation neurotoxicity nitric oxide release caspase‑1‑mediated IL‑1β release NF‑κB nuclear translocation

摘要:
PYNOD, a nod-like receptors (NLR)-like protein, was indicated to inhibit NF-κB activation, caspase-1-mediated interleukin (IL)-1β release and cell apoptosis in a dose-dependent manner. Exogenous addition of recombinant PYNOD to mixed glial cultures may suppress caspase-1 activation and IL-1β secretion induced by Aβ. However, to the best of our knowledge, there no study has focused on the immunoregulatory effects of PYNOD specifically in microglia. The present study aimed to explore the roles of PYNOD involved in the lipopolysaccharides (LPS)-induced microglial inflammation and consequent neurotoxicity. Murine microglial BV-2 cells were transfected with pEGFP-C2-PYNOD (0-5.0 µg/ml) for 24 h and incubated with or without LPS (1 µg/ml) for a further 24 h. Cell viability was determined using MTT assay and the secretion of nitric oxide (NO), IL-1β and caspase-1 was measured using the Griess method or ELISA. Protein expression levels of NF-κB p65 and inducible nitric oxide synthase (iNOS) were detected by immunofluorescent staining and/or western blot analysis. Co-culture of BV-2 cells with human neuroblastoma cell line SK-N-SH was performed in Transwell plates and the cell viability and apoptosis (using flow cytometry) of SK-N-SH cells were determined. Results indicated that PYNOD overexpression inhibited NO secretion and iNOS protein expression induced by LPS in BV-2 cells, with no detectable cytotoxicity. PYNOD overexpression also reduced the secretion of IL-1β and caspase-1 from BV-2 cells upon LPS stimulation. These effects were dose-dependent. Additionally, PYNOD overexpression prevented LPS-induced nuclear translocation of NF-κB p65 in BV-2 cells. The growth-inhibitory and apoptosis-promoting effects of BV-2 cells towards SK-N-SH cells were alleviated as a result of PYNOD overexpression. In conclusion, PYNOD may mitigate microglial inflammation and consequent neurotoxicity.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
第一作者:
第一作者机构: [1]Department of Ultrasonic Diagnosis, The First Affiliated Hospital of Gannan Medical College, Ganzhou, Jiangxi 341000
通讯作者:
通讯机构: [2]Key Laboratory of State Administration of Traditional Chinese Medicine of The People's Republic of China, Institute of Brain Research, Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China [*1]Key Laboratory of State Administration of Traditional Chinese Medicine of The People's Republic of China, Institute of Brain Research, Department of Pathophysiology, School of Medicine, Jinan University, 601 West Huangpu Avenue, Tianhe, Guangzhou, Guangdong 510632, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2022 今日访问量:0 总访问量:648 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号