高级检索
当前位置: 首页 > 详情页

ReDisX, a machine learning approach, rationalizes rheumatoid arthritis and coronary artery disease patients uniquely upon identifying subpopulation differentiation markers from their genomic data

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 预警期刊

机构: [1]Hong Kong Baptist Univ, Computat Med Lab, Hong Kong, Peoples R China [2]Hong Kong Baptist Univ, Inst Integrated Bioinformedicine & Translat Sci, Sch Chinese Med, Hong Kong, Peoples R China [3]Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China [4]Educ Minist China, Natl Key Clin Specialty, Engn Technol Res Ctr, Guangzhou, Peoples R China [5]Southern Med Univ, Zhujiang Hosp, Neurosurg Inst, Dept Neurosurg,Guangdong Provincial Key Lab Brain, Guangzhou, Peoples R China [6]Southern Med Univ, Sch Basic Med Sci, Dept Biochem & Mol Biol, Guangzhou, Peoples R China [7]Shanxi Med Univ, Hosp 1, Clin Med Coll 1, Dept Psychiat, Taiyuan, Peoples R China [8]Hong Kong Baptist Univ, Sch Commun, Dept Commun Studies, Hong Kong, Peoples R China [9]Guangdong Prov Key Lab Single Cell Technol & Appli, Guangzhou, Peoples R China
出处:
ISSN:

关键词: precision medicine redefined diagnosis genomic signature ReDisX machine learning drug repurposing continuous max flow

摘要:
Diseases originate at the molecular-genetic layer, manifest through altered biochemical homeostasis, and develop symptoms later. Hence, symptomatic diagnosis is inadequate to explain the underlying molecular-genetic abnormality and individual genomic disparities. The current trends include molecular-genetic information relying on algorithms to recognize the disease subtypes through gene expressions. Despite their disposition toward disease-specific heterogeneity and cross-disease homogeneity, a gap still exists in describing the extent of homogeneity within the heterogeneous subpopulation of different diseases. They are limited to obtaining the holistic sense of the whole genome-based diagnosis resulting in inaccurate diagnosis and subsequent management. Addressing those ambiguities, our proposed framework, ReDisX, introduces a unique classification system for the patients based on their genomic signatures. In this study, it is a scalable machine learning algorithm deployed to re-categorize the patients with rheumatoid arthritis and coronary artery disease. It reveals heterogeneous subpopulations within a disease and homogenous subpopulations across different diseases. Besides, it identifies granzyme B (GZMB) as a subpopulation-differentiation marker that plausibly serves as a prominent indicator for GZMB-targeted drug repurposing. The ReDisX framework offers a novel strategy to redefine disease diagnosis through characterizing personalized genomic signatures. It may rejuvenate the landscape of precision and personalized diagnosis and a clue to drug repurposing.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 2 区 医学:内科
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 医学:内科
JCR分区:
出版当年[2020]版:
Q1 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Hong Kong Baptist Univ, Computat Med Lab, Hong Kong, Peoples R China [2]Hong Kong Baptist Univ, Inst Integrated Bioinformedicine & Translat Sci, Sch Chinese Med, Hong Kong, Peoples R China [3]Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Hong Kong Baptist Univ, Computat Med Lab, Hong Kong, Peoples R China [2]Hong Kong Baptist Univ, Inst Integrated Bioinformedicine & Translat Sci, Sch Chinese Med, Hong Kong, Peoples R China [6]Southern Med Univ, Sch Basic Med Sci, Dept Biochem & Mol Biol, Guangzhou, Peoples R China [9]Guangdong Prov Key Lab Single Cell Technol & Appli, Guangzhou, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号