机构:[1]Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China[2]Department of Public Health, University of California, Irvine, Irvine, California, United State[3]Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China[4]School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China[5]School of Nursing, Jinan University, Guangzhou, China[6]Department of Statistics, Iowa State University, Ames, Iowa, Unite States[7]Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
Guangdong Provincial Key Laboratory
of Traditional Chinese Medicine Informatization
(2021B1212040007).
语种:
外文
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类|4 区医学
小类|3 区护理4 区心脏和心血管系统4 区呼吸系统
最新[2025]版:
大类|4 区医学
小类|3 区护理4 区心脏和心血管系统4 区呼吸系统
第一作者:
第一作者机构:[1]Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China[2]Department of Public Health, University of California, Irvine, Irvine, California, United State
共同第一作者:
通讯作者:
通讯机构:[3]Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China[7]Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China
推荐引用方式(GB/T 7714):
Wang Zichen,Zhang Luming,Huang Tao,et al.Developing an explainable machine learning model to predict the mechanical ventilation duration of patients with ARDS in intensive care units[J].Heart & lung : the journal of critical care.2022,58:74-81.doi:10.1016/j.hrtlng.2022.11.005.
APA:
Wang Zichen,Zhang Luming,Huang Tao,Yang Rui,Cheng Hongtao...&Lyu Jun.(2022).Developing an explainable machine learning model to predict the mechanical ventilation duration of patients with ARDS in intensive care units.Heart & lung : the journal of critical care,58,
MLA:
Wang Zichen,et al."Developing an explainable machine learning model to predict the mechanical ventilation duration of patients with ARDS in intensive care units".Heart & lung : the journal of critical care 58.(2022):74-81