高级检索
当前位置: 首页 > 详情页

Marine derived xyloketal derivatives exhibit anti-stress and anti-ageing effects through HSF pathway in Caenorhabditis elegans.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China [2]Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Key Laboratory for Diagnosis and Treatment of Major Neurological Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510275, PR China [3]Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed TCM, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
出处:
ISSN:

关键词: Xyloketal Anti-ageing Heat shock transcription factor-1 Heat shock protein Caenorhabditis elegans

摘要:
Ageing is a complex but universal phenomenon that progressively challenges the homeostasis network and finally leads to the dysfunction of organisms and even death. Previous studies demonstrated that xyloketal B and its derivatives, a series of marine novel ketone compounds, possessed unique antioxidative effects on endothelial and neuronal oxidative injuries. In this study, we examined the effects of xyloketal derivatives on extending lifespan and healthspan of Caenorhabditis elegans. The results showed that most selected xyloketals could protect Caenorhabditis elegans against heat stress and extend the lifespan of worms. Compound 15, a benzo-1, 3-oxazine xyloketal derivative, possessed most potent effect in anti-heat stress assay and significantly attenuated ageing-related decrease of pumping and bending of the worms in healthspan assay. In addition, the beneficial effect of 15 was abolished in PS3551 worms, a strain that possesses non-functional heat shock transcription factor-1 (HSF-1). Furthermore, 15 increased the expression of heat shock protein 70 (HSP70), a downstream molecular chaperone of HSF-1. These results indicated that HSF-1 might contribute to the protective effect of this compound in Caenorhabditis elegans ageing. Molecular docking studies suggested that these xyloketal derivatives were bound to the DNA binding domain of HSF-1, promoted the conformation of HSF-1, thus strengthened the interaction between the HSF-1 and related DNA. ALA-67, ASN-74 and LYS-80 of binding region might be the key amino residues during the interaction. Finally, compound 15 could reduce the paralysis of the CL4176 worms, a transgenic strain expressing human Aβ3-42 under a temperature-inducible system. Collectively, these data indicate that xyloketals have potential implications for further evaluation in anti-ageing studies. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 2 区 化学
小类 | 1 区 药物化学
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 药物化学
JCR分区:
出版当年[2016]版:
Q1 CHEMISTRY, MEDICINAL
最新[2023]版:
Q1 CHEMISTRY, MEDICINAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [1]School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号