高级检索
当前位置: 首页 > 详情页

Systematic studies on blood coagulation mechanisms of halloysite nanotubes-coated PET dressing as superior topical hemostatic agent

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China [2]College of Pharmacy, Jinan University, Guangzhou 510632, China [3]Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
出处:
ISSN:

关键词: Clay nanotube Coagulation Platelet activation Hemostasis Biocompatibility

摘要:
Halloysite nanotubes (HNTs), a traditional mineral Chinese medicine, have been used to stop bleeding for thousands of years. However, the coagulation mechanisms of HNTs and their practical application potential have not been fully elucidated. In this study, HNTs were found to accelerate hemostasis via multiple dependent approaches: (i) absorbing water and concentrating blood due to their super-hydrophilicity and unique tubular nanostructure; (ii) triggering an intrinsic coagulation cascade by negatively charged surface interaction; and (iii) accelerating clot formation by activating and linking with platelets. To solve the difficulty in the application of powder, a HNT-coated polyester fiber dressing was designed by an impregnation method. The HNT coating enables the dressing to resist massive hemorrhaging of the liver and vessels, as well as epidermal bleeding. Moreover, the HNT-coated fiber dressings are not accompanied by burning or adhesion at the wound sites. In summary, this work provides profound insight into HNT hemostasis through the physical and biological interactions between HNTs and blood, which represents a promising strategy for effective prehospital treatment and civilian needs.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 工程技术
小类 | 1 区 工程:环境 1 区 工程:化工
最新[2025]版:
大类 | 1 区 材料科学
小类 | 1 区 工程:化工 1 区 工程:环境
JCR分区:
出版当年[2020]版:
Q1 ENGINEERING, ENVIRONMENTAL Q1 ENGINEERING, CHEMICAL
最新[2023]版:
Q1 ENGINEERING, CHEMICAL Q1 ENGINEERING, ENVIRONMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号