高级检索
当前位置: 首页 > 详情页

A pattern learning-based method for temporal expression extraction and normalization from multi-lingual heterogeneous clinical texts

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ CPCI(ISTP) ◇ SSCI

机构: [1]School of Information Science and Technology, Guangdong University ofForeign Studies, Guangzhou, China [2]School of Computer, South ChinaNormal University, Guangzhou, China [3]School of Business, GuangdongUniversity of Foreign Studies, Guangzhou, China [4]The Second Affiliated Hospital,Guangzhou University of Chinese Medicine, Guangzhou, China
出处:
ISSN:

关键词: Temporal expression identification Heuristic rule Pattern generation Clinical texts Heterogeneous

摘要:
Background: Temporal expression extraction and normalization is a fundamental and essential step in clinical text processing and analyzing. Though a variety of commonly used NLP tools are available for medical temporal information extraction, few work is satisfactory for multi-lingual heterogeneous clinical texts. Methods: A novel method called TEER is proposed for both multi-lingual temporal expression extraction and normalization from various types of narrative clinical texts including clinical data requests, clinical notes, and clinical trial summaries. TEER is characterized as temporal feature summarization, heuristic rule generation, and automatic pattern learning. By representing a temporal expression as a triple < M, A, N>, TEER identifies temporal mentions M, assigns type attributes A to M, and normalizes the values of M into formal representations N. Results: Based on two heterogeneous clinical text datasets: 400 actual clinical requests in English and 1459 clinical discharge summaries in Chinese. TEER was compared with six state-of-the-art baselines. The results showed that TEER achieved a precision of 0.948 and a recall of 0.877 on the English clinical requests, while a precision of 0.941 and a recall of 0.932 on the Chinese discharge summaries. Conclusions: An automated method TEER for multi-lingual temporal expression extraction was presented. Based on the two datasets containing heterogeneous clinical texts, the comparison results demonstrated the effectiveness of the TEER method in multi-lingual temporal expression extraction from heterogeneous narrative clinical texts.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 4 区 医学
小类 | 3 区 医学:信息
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 医学:信息
JCR分区:
出版当年[2016]版:
Q3 MEDICAL INFORMATICS
最新[2023]版:
Q2 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [1]School of Information Science and Technology, Guangdong University ofForeign Studies, Guangzhou, China [2]School of Computer, South ChinaNormal University, Guangzhou, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号