高级检索
当前位置: 首页 > 详情页

Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Respiratory Medicine, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Guangdong, Shenzhen, China. [2]Department of Traditional Chinese Medicine, Zunyi Medical and Pharmaceutical College, Guizhou, Zunyi, China.
出处:
ISSN:

关键词: circular RNAs Notch1 pulmonary fibrosis transforming growth factor‐β

摘要:
Pulmonary fibrosis is a lethal inflammatory disease. In this study, we aimed to explore the potential-related circular RNAs (circRNAs) and genes that are associated with pulmonary fibrosis. Pulmonary fibrosis rat models were constructed and the fibrosis deposition was detected using hematoxylin and eosin and Masson staining. The differentially expressed circRNAs were obtained through RNA sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were further performed to uncover the key function and pathways in pulmonary fibrosis. The interaction networks between circRNAs and their downstream micro RNAs (miRNAs) and genes were constructed by Cytoscape Software. The quantitative polymerase chain reaction was performed to validate the expression of 10 candidate circRNAs and five of them were performed ringwise sequencing in pulmonary fibrosis rats. We further selected five candidate circRNAs target miRNAs and messenger RNAs and validated by real-time polymerase chain reaction. The pulmonary fibrosis models were successfully constructed according to the pathological examination. circRNAs were differentially expressed between the pulmonary fibrosis and normal pulmonary tissues. GO analysis verified that the differentially expressed circRNAs were significantly clustered in the cellular component, molecular function, and biological process. In the KEGG analysis, circRNAs were enriched in the following pathways: antigen processing and presentation, phagosome, PI3K-AKt signaling pathway, HTLV-I infection, and Herpes simplex infection. After validation in pulmonary fibrosis rat models, it was found that five of those circRNAs (chr9:113534327|113546234 [down], chr1:200648164|200672411 [down], chr5:150850432|150865550 [up], chr20:14319170|14326640 [down], and chr10:57634023|57634588 [down]) showed a relatively consistent trend with predictions. Validation of these circRNAs target miRNAs and genes showed that chr9:113534327|113546234, chr20:14319170|14326640, and chr10:57634023|57634588 were implicated in Notch1 activated transforming growth factor-β (TGF-β) signaling pathway. The study demonstrated that a series of circRNAs are differentially expressed in pulmonary fibrosis rats. These circRNAs, especially TGF-β- and Notch1-related circRNAs might play an important role in regulating pulmonary fibrogenesis. © 2019 The Authors Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 生物
小类 | 3 区 生化与分子生物学 4 区 细胞生物学
最新[2025]版:
大类 | 3 区 生物学
小类 | 4 区 生化与分子生物学 4 区 细胞生物学
JCR分区:
出版当年[2017]版:
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Q3 CELL BIOLOGY
最新[2023]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Q3 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]Department of Respiratory Medicine, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Guangdong, Shenzhen, China. [*1]Department of Respiratory Medicine, Shenzhen Luohu People’s Hospital, No. 47 Youyi Road, Luohu District, 518000 Shenzhen, China.
通讯作者:
通讯机构: [1]Department of Respiratory Medicine, Shenzhen Luohu People's Hospital, The Third Affiliated Hospital of Shenzhen University, Guangdong, Shenzhen, China. [*1]Department of Respiratory Medicine, Shenzhen Luohu People’s Hospital, No. 47 Youyi Road, Luohu District, 518000 Shenzhen, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2022 今日访问量:0 总访问量:648 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号