高级检索
当前位置: 首页 > 详情页

Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ EI ◇ 卓越:领军期刊

机构: [1]Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The Second Clinical Medical College and Department of Graduate School of Guangzhou University of Chinese Medicine, The Second School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China [2]State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials, School of Materials Science and Engineering, School of Physics, South China University of Technology, Guangzhou 510640, China [3]Orthopedic Centre, Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
出处:
ISSN:

关键词: antibacterial nanomaterials nanozyme multidrug-resistant bacteria wound healing

摘要:
Antibacterial nanomaterials have attracted growing interest for bacterial infection therapy. However, most nanomaterials eliminate bacteria either physically or chemically, which hampers their efficacy when dealing with multidrug-resistant bacteria. To overcome this, we integrated copper sulfide (CuS) nanoparticles with active graphene oxide nanosheets (GO NSs) to synthesize a superior nanocomposite (CuS/GO NC) that acts both physically and chemically on the bacteria. CuS/GO NC was produced using a facile hydrothermal method, whereby the CuS nanoparticles grew and were uniformly dispersed on the GO NSs in situ. We found that the CuS/GO NC possesses a unique needle-like morphology that physically damages the bacterial cell membrane. CuS/GO NC also exhibits high oxidase- and peroxidase-like activity, ensuring efficient generation of the reactive oxygen species center dot OH from H2O2, which kills bacteria chemically. These features endow the CuS/GO NC with excellent antibacterial capabilities to kill multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) with only a single dose. Additionally, it was found that the CuS/GO NC accelerated the healing of infected wounds in vivo owing to its good biocompatibility as well as facilitation of cell migration and collagen secretion. This study provides a new strategy to combine the physical and chemical antibacterial modes of nanomaterials to develop more effective therapies to combat multidrug-resistant bacterial infections.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 1 区 工程技术
小类 | 1 区 物理化学 1 区 材料科学:综合 1 区 纳米科技 1 区 物理:应用
最新[2025]版:
大类 | 1 区 材料科学
小类 | 1 区 材料科学:综合 1 区 纳米科技 1 区 物理:应用
JCR分区:
出版当年[2018]版:
Q1 PHYSICS, APPLIED Q1 CHEMISTRY, PHYSICAL Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY
最新[2023]版:
Q1 CHEMISTRY, PHYSICAL Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY Q1 PHYSICS, APPLIED

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The Second Clinical Medical College and Department of Graduate School of Guangzhou University of Chinese Medicine, The Second School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
共同第一作者:
通讯作者:
通讯机构: [1]Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The Second Clinical Medical College and Department of Graduate School of Guangzhou University of Chinese Medicine, The Second School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China [3]Orthopedic Centre, Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号